CS250P: Computer Systems Architecture
Some ISA Classifications

(1
>

Sang-Woo Jun

Fall 2022
Large amount of material adapted from MIT 6.004, “Computation Structures”,
U ‘ I Morgan Kaufmann “Computer Organization and Design: The Hardware/Software Interface: RISC-V Edition”,
and CS 152 Slides by Isaac Scherson

Course outline

d Part 1: The Hardware-Software Interface
o What makes a ‘good’ processor?
o Assembly language and programming conventions

Eight great ideas

(1 Design for Moore’s Law
!I Use abstraction to simplify design

dd Make the common case fast >td
oday

(J Performance via parallelism
d Performance via pipelining

d Performance via prediction

J Hierarchy of memories

J Dependability via redundancy

MOORE'S LAW

~_-

COMMON CASE FAST

|

PELINI

NG

A
AR
AR

HIERARCHY

DEPENDABILITY

The RISC/CISC Classification

(J Reduced Instruction-Set Computer (RISC)
o Precise definition is debated

o Small number of more general instructions

e RISC-V base instruction set has only dozens of instructions

 Memory load/stores not mixed with computation operations
(Different instructions for load from memory, perform computation in register)

» Often fixed-width encoding (4 bytes for base RISC-V)

o Complex operations implemented by composing general ones
e Compilers try their best!

o RISC-V, ARM (Advanced RISC Machines),
MIPS (Microprocessor without Interlocked Pipelined Stages),
SPARC, ...

The RISC/CISC Classification

(d Complex Instruction-Set Computer (CISC)
o Precise definition is debated (Not RISC?)

o Many, complex instructions
* Various memory access modes per instruction (load from memory? register? etc)
* Typically variable-length encoding per instruction
* Modern x86 has thousands!

o Intel x86,
IBM z/Architecture,

The RISC/CISC Classification

J RISC paradigm is winning out
o Simpler design allows faster clock

o Simpler design allows efficient microarchitectural techniques
e Superscalar, Out-of-order, ...

o Compilers very good at optimizing software

(d Most modern CISC processors have RISC internals
o CISCinstructions translated on-the-fly to RISC by the front-end hardware
o Added overhead from translation (silicon, power, performance, ...)

CS250P: Computer Systems Architecture
RISC-V Introduction

(1
>

Sang-Woo Jun

Fall 2022
Large amount of material adapted from MIT 6.004, “Computation Structures”,
U ‘ I Morgan Kaufmann “Computer Organization and Design: The Hardware/Software Interface: RISC-V Edition”,
and CS 152 Slides by Isaac Scherson

Why learn assembly?

J We (typically) don’t program with assembly any more

J BUT, important to understand architecture

o Arithmetic in x86 has two operands (e.g., add eax ebx), while RISC-V has three
(e.g., add x5 x6 x7)

o x86 has six general-purpose registers, while RISC-V has 32

o What drove these decisions? How does this impact processor design and
performance?

We need a reference architecture

RISC-V Introduction

(d We use RISC-V as a learning tool

d A free and open ISA from Berkeley : 4 RISC

o A clean-slate design using what was learned over decades
o Uncluttered by backwards compatibility
o Simplicity-oriented (Some say to a fault!)

J Many, many industry backers!
o Google, Qualcomm, NVIDIA, IBM, Samsung, Huawei, ...

RISC-V Introduction

J Composable, modular design

o Consists of a base ISA -- RV32] (32 bit), RV64I (64 bit) we will use RV32]

o And many composable extensions. Including:

‘M’: Math extension. Multiply and divide

* ‘F, ‘D’: Floating point extensions, single and double precision
e ‘A’: Atomic operations

e ‘B’: Bit manipulation

e ‘T’: Transactional memory

* ‘P’: Packed SIMD (Single-Instruction Multiple Data)

e ‘V’: Vector operators

* Designer can choose to implement combinations: e.g., RV64IMFT

d Virtual memory (Sv32, Sv48) and privileged operations specified

Structure of the ISA

J Small amount of fixed-size registers
o For RV32I 32 32- b|t reglsters (32 64-bit registers for RV64)

Important!

d Three types of instructions
1. Computational operation: from register file to register file
* X4 = Op(x,,), where Op € {+, -, AND, OR, >, <, ...}
* Op implemented in ALU
2. Load/Store: between memory and register file

3. Control flow: jump to different part of code

RISC-V base architecture components

Register file Arithmetic Logic Unit Main memory interface
Program Xcl)
Counter X Pr(?gram
X2 @ @ Binary
X3
x4
X5 Op
ALU
. Working data
32-bit words* :
- ——————————— = —>
x31
e Current location e 32 32-bit registers * |Input: 2 values, Op e Actual memory

in program execution ¢ (64 bit words for RV64) e OQutput: 1 value outside CPU chip

Super simplified processor operation

inst = mem[PC]
next PC=PC+4

if (inst.type == STORE) mem|rf[inst.argl]] = rf[inst.arg2]

if (inst.type == LOAD) rf[inst.argl] = mem|[rf[inst.arg2]]

if (inst.type == ALU) rf[inst.argl] = alu(inst.op, rf[inst.arg2], rf[inst.arg3])

if (inst.type == COND) next_PC = rf[inst.argl]

PC = next_PC

RISC-V never mixes memory and ALU operations!
Why not?!

In the four bytes of the instruction,
type, argl, arg2, arg3, op
needs to be encoded

A RISC-V Example ("0O0A9 8933")

d This four-byte binary value will instruct a RISC-V CPU to perform
o add values in registers x19 x10, and store it in x18
o regardless of processor speed, internal implementation, or chip designer

add x18,x19,x10

31 25 24 20 19 15 14 12 11 76 0
funct7 | rs2 rsl funct3 | rd opcode
7 5 5 3 5 T
0000000 | 01010 | 10011 000 10010 | 0110011
ADD rs2=10 rs1=19 ADD rd=18 Reg-Reg OP

In the four bytes of the instruction,
type, argl, arg2, arg3, op
needs to be encoded

Source: Yuanqging Cheng, “Great Ideas in Computer Architecture RISC-V Instruction Formats”

CS152: Computer Systems Architecture
Storytime — x86 And Surrounding History

(1
>

Sang-Woo Jun

Fall 2022
Large amount of material adapted from MIT 6.004, “Computation Structures”,
U ‘ I Morgan Kaufmann “Computer Organization and Design: The Hardware/Software Interface: RISC-V Edition”,
and CS 152 Slides by Isaac Scherson

x86: Evolution with backward compatibility

J 8080 (1974): 8-bit microprocessor

O
O
O

Accumulator, plus 3 index-register pairs
Widely successful, spawned many clones
leog 280 Stl” manufactured today' Intel 8080 (Photo Konstantin Lanzet)

J Intel iIAPX 432 (1975): First 32-bit architecture

O
O

O O O O

New ISA, not backwards compatible ' Wwww
High-level language features built in e

* Memory access control, garbage collection, etc in hardware Zilog 280 (Photo Gennadiy Shvets)
No explicit registers, stack-based
Bit-aligned variable-length ISA

Circuit too large! Spread across two chips
..Slow...

Toshiba Z84C00 (Photo Dhrm77, Wikipedia)

x86: Evolution with backward compatibility

1 8086 (1978): 16-bit extension to 8080
o Intended temporary substitute until the delayed iAPX 432 became available
o Backwards compatible with 8080
o Widely popular, used in original IBM PC
o Complex instruction set (CISC)

J 8087 (1980): floating-point coprocessor
o Adds FP instructions and register stack

1 80286 (1982): 24-bit addresses, MMU

o Segmented memory mapping and protection

o Each segment was a 16-bit address space
* Compatibility with legacy programs (CP/M, etc)

Intel 8087 (Photo Dirk Oppelt)

Intel 80286 (Photo Peter Binter)

x86: Evolution with backward compatibility

1 80386 (1985): 32-bit extension (now IA-32)

o Additional addressing modes and operations
* Paged memory mapping as well as segments

o “Virtual 8086 mode”

* Special operation mode for a task/process
* Hardware virtualization support for legacy software (e.g., MS-DOS) Intel 8087 (Photo Dirk Oppelt)
e Multiple instances of DOS programs could run in parallel

o OS can finally move beyond MS-DOS!
* Previously stuck because DOS compatibility could not be ignored

* DOS software expected exclusive hardware control...
* What made windows feasible! Windows 3.1 built on this

Intel 80286 (Photo Peter Binter)

x86: Evolution with backward compatibility

J Further single-thread evolution...
o i486 (1989): pipelined, on-chip caches and FPU
* Compatible competitors: AMD, Cyrix, ...
o Pentium (1993): superscalar, 64-bit datapath
* Later versions added MMX (Multi-Media eXtension) instructions
* The infamous FDIV bug
o Pentium Pro (1995), Pentium Il (1997)
* New microarchitecture (see Colwell, The Pentium Chronicles)
o Pentium Il (1999)
* Added SSE (Streaming SIMD Extensions) and associated registers
o Pentium 4 (2001)

e New microarchitecture
 Added SSE2 instructions

Intel Pentium Il (Photo Asimzb, Wikipedia)

x86: Evolution with backward compatibility

d Intel Itanium/EPIC (Explicitly Parallel Instruction Computing) — |A-64
o Time to go beyond 8080 backwards compatibility!
o Time to go beyond transparent, single instruction stream!
o “VLIW (Very Long Instruction Word)”

e Each instruction (“bundle”) consists of three sub-instructions

* Three instructions issued at once (CPI of 1/3 if lucky) F;‘:;fge;icczn;iﬁ”t‘;t ﬁ;’:lzprie;in']tl?;'c

* Lots of tricks to deal with data dependencies
 Difficult design! Delay...
* Some opinions: Writing compilers was hard...

“ . . . ” O+ . - - — : : : T T .
ZDNet, “Mining ltanium 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009

x86: Evolution with backward compatibility

(J Meanwhile at AMD: AMDG64, or x86-64

o Backwards compatible architecture extension to 64 bits
o Later also adopted by Intel

1 Intel Core (2006) — Going dual-core

o Added SSE4 instructions, virtual machine support

1 AMDG64 (announced 2007): SSE5 instructions
o Intel declined to follow, instead...

d Advanced Vector Extension (announced 2008)
* Longer SSE registers, more instructions

 If Intel didn’t extend with compatibility, its competitors would!
o Technical elegance # market success

Intel x86 — Registers

(d Much smaller number of registers
compared to RISC-V

1 Four ‘general purpose’ registers

o Naming has historical reasons
o Originally AX...DX, but ‘Extended’ to 32 bits
o 64 bit extensions with ‘R’ prefix

J Aside: Now we know four is too little...

J Special registers for stack management
o RISC-V has no special register (Except x0)

EAX

EBX

ECX

EDX

ESI

General-purpose Registers

EDI

ESP
(stack pointer)

EBP
{base pointer)

+——— 16 bits —

8 bits

8 bits

AH

AL

BX

BH

BL

CX

CH

CL

DX

DH

DL

32 bits

Aside: Intel x86 — Addressing modes

J Typical x86 assembly instructions have many addressing mode variants

Source/dest operand

Second source operand

Register Register
Register Immediate
Register Memory
Memory Register
Memory Immediate

d e.g., ‘add’ has two input operands, storing the add in the second

add <reg>, <reg>
add <mem>, <reg>
add <reg>, <mem>
add <imm>, <reg>
add <imm>, <mem>

Example source: Guide to x86 Assembly - Yale FLINT Group

EAX

Examples
add S10, %eax — EAX is set to EAX + 10
addb $10, (%eax) — add 10 to the single byte stored at memory address stored in

CISC! But no “Memory -> Memory”

Aside: CISC and x86

(J x86 ISA is CISC (“Complex”)

Hex Mnemonics

C3 ret

48 b8 88 77 66 55 movabs rax,0x1122334455667788
44 33 22 11

64 ff 03 DWORD PTR fs:[ebx]

64 67 ff 07 inc PTR fs:[bx]

2e c4 e2 71 96 84 vimaddsubl132ps xmmO, xmml,

be 34 23 12 01 xmmword ptr cs:

[esi + edi * 4 + 0x11223344]

Philipp Koppe et.al., “Reverse Engineering x86 Processor Microcode,” USENIX security 2017

Aside: x86 — Instruction accumulation

J Backward compatibility = instruction set doesn’t change
o But they do accrete more instructions

NEW X86 INSTRUCTIONS & RELATED PATENTS
2000 1 I 1 T
1800 ?ﬁhél) % Koo é% @ & 2 e
S £ A
R | S 3 5 5< 38
£ 1400 - @ a o T o -
2 1200 |- e -
2 1000 |- ? =
5 800 |- —
2 600 |- /__,,_/r " =
o
s 400 - -
< 200 | .
0) I l % l

1§95 2000 2005 2010
Year

1975 1980 1985 1990

Source: Intel Newsroom“X86: Approaching 40 and Still Going Strong” Source: Dezs6 Sima “Client processors - 2 x86 ISA extensions”

