
CS250P: Computer Systems Architecture
Some ISA Classifications

Sang-Woo Jun

Fall 2022

Large amount of material adapted from MIT 6.004, “Computation Structures”,
Morgan Kaufmann “Computer Organization and Design: The Hardware/Software Interface: RISC-V Edition”,

and CS 152 Slides by Isaac Scherson

Course outline

❑ Part 1: The Hardware-Software Interface
o What makes a ‘good’ processor?
o Assembly language and programming conventions

❑ Part 2: Recap of digital design
o Combinational and sequential circuits
o How their restrictions influence processor design

❑ Part 3: Computer Architecture
o Computer Arithmetic
o Simple and pipelined processors
o Caches and the memory hierarchy

❑ Part 4: Computer Systems
o Operating systems, Virtual memory

Eight great ideas

❑ Design for Moore’s Law

❑ Use abstraction to simplify design

❑ Make the common case fast

❑ Performance via parallelism

❑ Performance via pipelining

❑ Performance via prediction

❑ Hierarchy of memories

❑ Dependability via redundancy

today

The RISC/CISC Classification

❑ Reduced Instruction-Set Computer (RISC)
o Precise definition is debated

o Small number of more general instructions
• RISC-V base instruction set has only dozens of instructions

• Memory load/stores not mixed with computation operations
(Different instructions for load from memory, perform computation in register)

• Often fixed-width encoding (4 bytes for base RISC-V)

o Complex operations implemented by composing general ones
• Compilers try their best!

o RISC-V, ARM (Advanced RISC Machines),
MIPS (Microprocessor without Interlocked Pipelined Stages),
SPARC, …

The RISC/CISC Classification

❑ Complex Instruction-Set Computer (CISC)
o Precise definition is debated (Not RISC?)

o Many, complex instructions
• Various memory access modes per instruction (load from memory? register? etc)

• Typically variable-length encoding per instruction

• Modern x86 has thousands!

o Intel x86,
IBM z/Architecture,

o …

The RISC/CISC Classification

❑ RISC paradigm is winning out
o Simpler design allows faster clock

o Simpler design allows efficient microarchitectural techniques
• Superscalar, Out-of-order, …

o Compilers very good at optimizing software

❑ Most modern CISC processors have RISC internals
o CISC instructions translated on-the-fly to RISC by the front-end hardware

o Added overhead from translation (silicon, power, performance, …)

CS250P: Computer Systems Architecture
RISC-V Introduction

Sang-Woo Jun

Fall 2022

Large amount of material adapted from MIT 6.004, “Computation Structures”,
Morgan Kaufmann “Computer Organization and Design: The Hardware/Software Interface: RISC-V Edition”,

and CS 152 Slides by Isaac Scherson

Why learn assembly?

❑ We (typically) don’t program with assembly any more

❑ BUT, important to understand architecture
o Arithmetic in x86 has two operands (e.g., add eax ebx), while RISC-V has three

(e.g., add x5 x6 x7)

o x86 has six general-purpose registers, while RISC-V has 32

o What drove these decisions? How does this impact processor design and
performance?

We need a reference architecture

RISC-V Introduction

❑ We use RISC-V as a learning tool

❑ A free and open ISA from Berkeley
o A clean-slate design using what was learned over decades

o Uncluttered by backwards compatibility

o Simplicity-oriented (Some say to a fault!)

❑ Many, many industry backers!
o Google, Qualcomm, NVIDIA, IBM, Samsung, Huawei, …

RISC-V Introduction

❑ Composable, modular design
o Consists of a base ISA -- RV32I (32 bit), RV64I (64 bit)

o And many composable extensions. Including:
• ‘M’: Math extension. Multiply and divide

• ‘F’, ‘D’: Floating point extensions, single and double precision

• ‘A’: Atomic operations

• ‘B’: Bit manipulation

• ‘T’: Transactional memory

• ‘P’: Packed SIMD (Single-Instruction Multiple Data)

• ‘V’: Vector operators

• Designer can choose to implement combinations: e.g., RV64IMFT

❑ Virtual memory (Sv32, Sv48) and privileged operations specified

We will use RV32I

Structure of the ISA

❑ Small amount of fixed-size registers
o For RV32I, 32 32-bit registers (32 64-bit registers for RV64)

o A question: Why isn’t this number larger? Why not 1024 registers?

o Another question: Why not zero?

❑ Three types of instructions
1. Computational operation: from register file to register file

• xd = Op(xa, xb), where Op ∈ {+, -, AND, OR, >, <, …}

• Op implemented in ALU

2. Load/Store: between memory and register file

3. Control flow: jump to different part of code

Important!

RISC-V base architecture components

Register file

…

32-bit words*

x0
x1
x2
x3
x4
x5

x31

Program
Counter

Main memory interface

ALU

Arithmetic Logic Unit

Program
Binary

Working data

…
…

• 32 32-bit registers
• (64 bit words for RV64)

• Input: 2 values, Op
• Output: 1 value

• Actual memory
outside CPU chip

• Current location
in program execution

Op

Op ∈ {+, -, AND, OR, >, <, …}

Super simplified processor operation

inst = mem[PC]

next_PC = PC + 4

if (inst.type == STORE) mem[rf[inst.arg1]] = rf[inst.arg2]

if (inst.type == LOAD) rf[inst.arg1] = mem[rf[inst.arg2]]

if (inst.type == ALU) rf[inst.arg1] = alu(inst.op, rf[inst.arg2], rf[inst.arg3])

if (inst.type == COND) next_PC = rf[inst.arg1]

PC = next_PC
In the four bytes of the instruction,
type, arg1, arg2, arg3, op
needs to be encoded

RISC-V never mixes memory and ALU operations!

Why not?!

A RISC-V Example (“00A9 8933”)

❑ This four-byte binary value will instruct a RISC-V CPU to perform
o add values in registers x19 x10, and store it in x18

o regardless of processor speed, internal implementation, or chip designer

Source: Yuanqing Cheng, “Great Ideas in Computer Architecture RISC-V Instruction Formats”

In the four bytes of the instruction,
type, arg1, arg2, arg3, op
needs to be encoded

CS152: Computer Systems Architecture
Storytime – x86 And Surrounding History

Sang-Woo Jun

Fall 2022

Large amount of material adapted from MIT 6.004, “Computation Structures”,
Morgan Kaufmann “Computer Organization and Design: The Hardware/Software Interface: RISC-V Edition”,

and CS 152 Slides by Isaac Scherson

x86: Evolution with backward compatibility

❑ 8080 (1974): 8-bit microprocessor
o Accumulator, plus 3 index-register pairs

o Widely successful, spawned many clones

o Zilog Z80 still manufactured today!

❑ Intel iAPX 432 (1975): First 32-bit architecture
o New ISA, not backwards compatible

o High-level language features built in
• Memory access control, garbage collection, etc in hardware

o No explicit registers, stack-based

o Bit-aligned variable-length ISA

o Circuit too large! Spread across two chips

o …Slow…

Intel 8080 (Photo Konstantin Lanzet)

Zilog Z80 (Photo Gennadiy Shvets)

Toshiba Z84C00 (Photo Dhrm77, Wikipedia)

x86: Evolution with backward compatibility

❑ 8086 (1978): 16-bit extension to 8080
o Intended temporary substitute until the delayed iAPX 432 became available

o Backwards compatible with 8080

o Widely popular, used in original IBM PC

o Complex instruction set (CISC)

❑ 8087 (1980): floating-point coprocessor
o Adds FP instructions and register stack

❑ 80286 (1982): 24-bit addresses, MMU
o Segmented memory mapping and protection

o Each segment was a 16-bit address space
• Compatibility with legacy programs (CP/M, etc)

Intel 8087 (Photo Dirk Oppelt)

Intel 80286 (Photo Peter Binter)

x86: Evolution with backward compatibility

❑ 80386 (1985): 32-bit extension (now IA-32)
o Additional addressing modes and operations

• Paged memory mapping as well as segments

o “Virtual 8086 mode”
• Special operation mode for a task/process

• Hardware virtualization support for legacy software (e.g., MS-DOS)

• Multiple instances of DOS programs could run in parallel

o OS can finally move beyond MS-DOS!
• Previously stuck because DOS compatibility could not be ignored

• DOS software expected exclusive hardware control…

• What made windows feasible! Windows 3.1 built on this

Intel 8087 (Photo Dirk Oppelt)

Intel 80286 (Photo Peter Binter)

x86: Evolution with backward compatibility

❑ Further single-thread evolution…
o i486 (1989): pipelined, on-chip caches and FPU

• Compatible competitors: AMD, Cyrix, …
o Pentium (1993): superscalar, 64-bit datapath

• Later versions added MMX (Multi-Media eXtension) instructions
• The infamous FDIV bug

o Pentium Pro (1995), Pentium II (1997)
• New microarchitecture (see Colwell, The Pentium Chronicles)

o Pentium III (1999)
• Added SSE (Streaming SIMD Extensions) and associated registers

o Pentium 4 (2001)
• New microarchitecture
• Added SSE2 instructions

Intel Pentium II (Photo Asimzb, Wikipedia)

x86: Evolution with backward compatibility

❑ Intel Itanium/EPIC (Explicitly Parallel Instruction Computing) – IA-64
o Time to go beyond 8080 backwards compatibility!

o Time to go beyond transparent, single instruction stream!

o “VLIW (Very Long Instruction Word)”
• Each instruction (“bundle”) consists of three sub-instructions

• Three instructions issued at once (CPI of 1/3 if lucky)

• Lots of tricks to deal with data dependencies

• Difficult design! Delay…

• Some opinions: Writing compilers was hard…

ZDNet, “Mining Itanium”

ExtremeTech “Farewell, Godspeed, Itanic:
Intel to Discontinue the Itanium Family”

x86: Evolution with backward compatibility

❑ Meanwhile at AMD: AMD64, or x86-64
o Backwards compatible architecture extension to 64 bits
o Later also adopted by Intel

❑ Intel Core (2006) – Going dual-core
o Added SSE4 instructions, virtual machine support

❑ AMD64 (announced 2007): SSE5 instructions
o Intel declined to follow, instead…

❑ Advanced Vector Extension (announced 2008)
• Longer SSE registers, more instructions

❑ If Intel didn’t extend with compatibility, its competitors would!
o Technical elegance ≠ market success

Intel x86 – Registers

❑ Much smaller number of registers
compared to RISC-V

❑ Four ‘general purpose’ registers
o Naming has historical reasons

o Originally AX…DX, but ‘Extended’ to 32 bits

o 64 bit extensions with ‘R’ prefix

❑ Aside: Now we know four is too little…

❑ Special registers for stack management
o RISC-V has no special register (Except x0)

Aside: Intel x86 – Addressing modes

❑ Typical x86 assembly instructions have many addressing mode variants

❑ e.g., ‘add’ has two input operands, storing the add in the second

Source/dest operand Second source operand

Register Register

Register Immediate

Register Memory

Memory Register

Memory Immediate

add <reg>, <reg>

add <mem>, <reg>

add <reg>, <mem>

add <imm>, <reg>

add <imm>, <mem>

Examples
add $10, %eax — EAX is set to EAX + 10
addb $10, (%eax) — add 10 to the single byte stored at memory address stored in
EAX

Example source: Guide to x86 Assembly - Yale FLINT Group

CISC! But no “Memory -> Memory”

Aside: CISC and x86

❑ x86 ISA is CISC (“Complex”)

Philipp Koppe et.al., “Reverse Engineering x86 Processor Microcode,” USENIX security 2017

Aside: x86 – Instruction accumulation

❑ Backward compatibility  instruction set doesn’t change
o But they do accrete more instructions

Source: Intel Newsroom“X86: Approaching 40 and Still Going Strong” Source: Dezső Sima “Client processors - 2 x86 ISA extensions”

